Python Script Support for ESM

In This Chapter

This section describes the Python script support for Enhanced Subscriber Management (ESM).

The following topics are included:

Python Script Support for ESM on page 1468
Python in SR-OS Overview on page 1469

— Python Changes on page 1469

Python Support in sub-ident-policy on page 1470
— Configuration on page 1472

— Operator Debugging on page 1474

— Python Scripts on page 1475

— Sample Python Scripts on page 1476

— Limitations on page 1480

RADIUS Script Policy Overview on page 1481
— Python RADIUS API on page 1482

— Sample Script on page 1482

Python Policy Overview on page 1483

Python Policy — RADIUS API on page 1484
Python Policy — DHCPv4 API on page 1484
Python Policy — DHCPv6 API on page 1488
Python Policy — Diameter API on page 1495
Python Policy — DHCP Transaction Cache API on page 1502
Applying a Python Policy on page 1506

N 2R 2

Python Script Protection on page 1506
Tips and Tricks on page 1507

| 7450 ESS Triple Play Service Delivery Architecture Page 1467

Python Script Support for ESM

Python Script Support for ESM

In order to provide programmable flexibility in ESM applications, the SR OS provides the
following features with Python script support:

* sub-ident-policy
* radius-script-policy

e python-policy

| Page 1468 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Python in SR-OS Overview

The SR-OS python script support is based on Python version 2.4.2. Python has a set of language
features (such as functions, lists and dictionaries) and a very large set of packages which provide
most of the Python functionality. By keeping the language features intact and drastically reducing
the number of packages available, the operator is provided with a flexible, although small,
scripting language.

The only feature removed from the Python language is unicode support. The only packages
provided to the operator are:

* alc — The SR OS-provided packages provide access to various ESM objects such as
DHCPv4, DHCPv6 or RADIUS packets.

* binascii — Common ASCII decoding like base64.

* re — Regular expression support.

* struct — Parses and manipulates binary strings.

* md5 — MDS5 message digest algorithm.

Python Changes

Some changes have been made to Python in order to run on an embedded system:

* No files or sockets can be opened from inside Python scripts.

* No system calls can be made from inside Python scripts nor is the posix package
available.

* The maximum recursion depth is fixed to twenty.

* The total amount of dynamic memory available for Python itself and Python scripts is
capped at 2MB.

* The size of the script source file must be less than 16KB.

| 7450 ESS Triple Play Service Delivery Architecture Page 1469

Python Support in sub-ident-policy

Python Support in sub-ident-policy

A Python script can be configured in sub-ident-policy to return following ESM attributes:
* sub-id
* sla-profile name
e sub-profile name
e ancp-string
The system will run the Python script configured in the sub-ident-policy against the received

DHCPv4 ACK message. This is used as the input of the script. Within the script, the user can set
the value with the above ESM attributes.

| Page 1470 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

The alc package contains a DHCP object, and has the following members (Table 21).

Table 21: DHCP Object Members

Name Read Write Class
htype X integer

hlen X integer

hops X integer

flags X integer
ciaddr X integer
yiaddr X integer
siaddr X integer
giaddr X integer
chaddr X string
sname X string

file X string
options X TLV
sub_ident X string
sub_profile string X string
sla_profile string X string
ancp_string X string
app_profile string X string
category_map name X string
int_dest id X string

The TLV type provides easy access to the value part of a stream of type-length-value variables, as
is the case for the DHCP option field. In the example on page 1472, the circuit-ID is accessed as
alc.dhcp.options[82][1].

Some DHCP servers do not echo the relay agent option (option 82) when the DHCP message was

snooped instead of relayed. For the convenience of the operator, the relay agent option from the
request message is returned when alc.dhcp.options[82] is called.

7450 ESS Triple Play Service Delivery Architecture Page 1471

Configuration

Configuration

As an example consider script us5.py on page 1475 which sets the sub_ident variable based on the
circuit ID of three different DSLAM:s:

import re

import alc

import struct

ASAM DSLAM circuit ID comes in three flavours:

FENT string "TLV1: ATM:3/0:100.33"

GELT octet-stream 0x01010000A0A0A0A0000000640022

GENT string "ASAM11 atm 1/1/01:100.35"

#

Script sets output ('subscriber') to 'sub-vpi.vci', e.g.: 'sub-100.33'. circuitid =

str(alc.dhcp.options[82]1[1])
m = re.search(r' (\d+\.\d+)$', circuitid)

if m:

FENT and GENT

alc.dhcp.sub ident = "sub-" + m.group ()

elif len(circuitid) >= 3:

GELT

Note: what byte order does GELT use for the VCI?

Assume network byte (big endian) order for now. vpi = struct.unpack('B', circuitid[-3:-
21) 0]

vci = struct.unpack('>H', circuitid([-2:]) [0]

alc.dhcp.sub _ident = "sub-%d.%d" % (vpi, vci)

Configure the url to this script in a sub-ident-policy as follows:

sub-ident-policy "DSLAM" create
description "Parse circuit IDs from different DSLAMs"
primary

script-url "ftp://xxx.xxx.xxx.xx/py/us5.py"
no shutdown
exit

And attach this sub-ident-policy to the sub-sla-mgmt from a SAP:

A:dut-A>config>service>vpls>sap# info

description "client side"
lease-populate 50

no shutdown

exit

anti-spoof ip-mac

sub-sla-mgmt
sub-ident-policy "DSLAM"
no shutdown

Page 1472 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Note that DHCP snooping/relaying should be configured properly in order for this to work.

| 7450 ESS Triple Play Service Delivery Architecture Page 1473

Operator Debugging

Operator Debugging

Verbose debug output is sent to debug-trace on compile errors, execution errors, execution output
and the exported result variables.

A:dut-A>config>subscr-mgmt>sub-ident-pol>primary# script-url "ftp://xxXx.xxXx.xxX.xx/py/
parsefaill.py"
A:dut-A>config>subscr-mgmt>sub-ident-pol>primary# no shutdown

1 2006/07/30 01:17:33.14 UTC MINOR: DEBUG #2001 - Python Compile Error
"Python Compile Error: parsefaill.py
File "ftp://xxx.xxx.xx.xx/py/parsefaill.py", line 2 def invalid function():

A

IndentationError: expected an indented block

A:dut-A>config>subscr-mgmt>sub-ident-pol>primary# script-url "ftp://xxXx.Xxx.xXx.xXx/py/
dump.py"

2 2006/07/30 01:24:55.50 UTC MINOR: DEBUG #2001 - Python Output

"Python Output: dump.py htype =0

hlen = 0 hops = 0 flags =0

ciaddr = '0.0.0.0' yiaddr = '0.0.0.0' siaddr = '0.0.0.0' giaddr = '0.0.0.0' chaddr =
L

sname = "

file ="

options = '"5\x01\x056\x04\n\x01\x07\n3\x04\x00\x00\x00\xb4\x01\x04\xff\xEff\xff
\x00\x1c\x04\n\x02\x02\xffR\x0f\x01\rdut-A|1|1/1/1\xf£" "

3 2006/07/30 01:24:55.50 UTC MINOR: DEBUG #2001 - Python Result
"Python Result: dump.py

A:dut-A>config>subscr-mgmt>sub-ident-pol>primary# script-url "ftp://xxx.xxx.xx.xx/py/end-
less.py"

4 2006/07/30 01:30:17.27 UTC MINOR: DEBUG #2001 - Python Output
"Python Output: endless.py

5 2006/07/30 01:30:17.27 UTC MINOR: DEBUG #2001 - Python Error

"Python Error: endless.py

Traceback (most recent call last):

File "ftp://xxx.xxx.xx.xx/py/endless.py", line 2, in ? FatalError: script interrupted
(timeout)

Note that all the Python Result events are empty because none of the scripts set any of the output
variables.

Page 1474 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Python Scripts

Note that the scripts in this section are test scripts and not scripts which the operator would
normally use.

dllmp.py—from alc import dhcp

def print field(key, value):
print '%$-8s = %r' % (key, value)

def ipaddr2a(ipaddr) :

return '%d.%d.%d.%d' % (

(ipaddr & O0xFF000000) >> 24, (ipaddr & O0x00FF0000) >> 16, (ipaddr & 0x0000FF00) >> 8,
(ipaddr & 0x000000FF))

print field('htype', dhcp.htype) print field('hlen', dhcp.hlen) print -
field('hops', dhcp.hops) print field('flags', dhcp.flags) print field('ciaddr',
ipaddr2a(dhcp.ciaddr)) print field('yiaddr', ipaddr2a(dhcp.yiaddr)) print field('siaddr',
ipaddr2a (dhcp.siaddr)) print field('giaddr', ipaddr2a(dhcp.giaddr)) print field('chaddr',
dhcp.chaddr) print field('sname', dhcp.sname) print field('file', dhcp.file) print -
field('options', str(dhcp.options))

uSS.p)’——-import re import alc import struct

ASAM DSLAM circuit ID comes in three flavors:

FENT string "TLV1: ATM:3/0:100.33"

GELT octet-stream 0x01010000A0A0A0A0000000640022

GENT string "ASAM11 atm 1/1/01:100.35"

#

Script sets output ('subscriber') to 'sub-vpi.vci', e.g.: 'sub-100.33'. circuitid =

str(alc.dhcp.options[82][1])
m = re.search(r' (\d+\.\d+)$', circuitid)

if m:

FENT and GENT

alc.dhcp.sub ident = "sub-" + m.group()

elif len(circuitid) >= 3:

GELT

Note: what byte order does GELT use for the VCI?

Assume network byte (big endian) order for now. vpi = struct.unpack('B', circuitid[-3:-
21) [0]

vci = struct.unpack('>H', circuitid[-2:]) [0]

alc.dhcp.sub ident = "sub-%d.%d" % (vpi, vci)

| 7450 ESS Triple Play Service Delivery Architecture Page 1475

Sample Python Scripts

Sample Python Scripts

Example

Page 1476

This section provides examples to show how the script can be used in the context of Enhanced
Subscriber Management.

Note that these scripts are included for informational purposes only. The operator must customize
the script to match their own network and processes.

This script uses the IP address assigned by the DHCP server to derive both sub_ident and
sla_profile string.

Script:

1. import alc

2. yiaddr = alc.dhcp.yiaddr

3. # Subscriber ID equals full client IP address.

4. # Note: IP address 10.10.10.10 yields 'sub-168430090"'

5. # and not 'sub-10.10.10.10"

6. alc.dhcp.sub ident = 'sub-' + str(yiaddr)

7. # DHCP server is configured such that the third byte (field) of the IP
8. # address indicates the session Profile ID.

9. alc.dhcp.sla profile string = 'sp-' + str((yiaddr & 0x0000FF00) >> 8)
Explanation:

Line 1 — Imports the library “alc” — Library imports can reside anywhere in the script as long as
the items are imported before they are used.

Line 2— Assigns the decimal value of the host’s IP address to a temporary variable “yiaddr”. Line
6: The text “sub_“ followed by yiaddr is assigned to “sub_ident” string.

Line 9— The text “sp-“ followed with the third byte of the IP address is assigned to the “sla-
profile” string.

If this script is run, for example, with a DHCP-assigned IP address of:
yiaddr = 10.10.0.2
The following variables are returned:

sub_ident: sub-168427522 (hex = AOA00002 = 10.10.0.2)
sla ident: sp-0

7450 ESS Triple Play Service Delivery Architecture

Example

Service Manager Scripting Language

This script returns the sub_profile string and sla_profile_string, which are coded directly in the
Option 82 string.

Script:

1. import re

2. import alc

3. # option 82 formatted as follows:

4. # "<subscriber Profile>-<sla-profile>”

5. ident = str(alc.dhcp.options[82][1])

6. alc.dhcp.sub_ident = ident

7. tmp = re.match (" (?P<sub>.+)-(?P<sla>.+)", str(ident))
8. alc.dhcp.sub profile string = tmp.group ("sub")

9. alc.dhcp.sla profile string = tmp.group("sla")

Explanation:

Line 1-2 — Import the libraries “re”” and “alc”. Library imports can reside anywhere in the script
as long as the items are imported before they are used.

Line 6 — Assigns the full contents of the DHCP Option 82 field to the “sub _ident” variable.
Line 7 — Splits the options 82 string into two parts, separated by “-”.

Line 8 — Assigns the first part of the string to the variable “sub_profile string”.

Line 9 — Assigns the second part of the string to the variable “sla_profile string”.

If this script is run, for example, with DHCP option field:
options = \x52\x0D\x01\0x0Bmydsl-video

The following variables are returned:

sub ident: mydsl-video

sub profile string: mydsl
sla profile string: video

7450 ESS Triple Play Service Delivery Architecture Page 1477

Sample Python Scripts

Example

Page 1478

This script parses the Option82 “circuit-id” info inserted in the DHCP packet by a DSLAM, and
returns the sub_ident string.

Script:

1. import re

2. import alc

3. import struct

4. # Alcatel 7300 ASAM circuit ID comes in three flavors:
5. # FENT string "TLV1: ATM:3/0:100.33"

6. # GELT octet-stream 0x01010000A0A0A0A0000000640022
7. # GENT string "ASAM11 atm 1/1/01:100.35"
8. #

9. # Script sets output ('subscriber') to 'sub-vpi.vci',
10. # e.g.: 'sub- 100.33"'.

11. circuitid = str(alc.dhcp.options[82][1])

12. m = re.search(r' (\d+\.\d+)$"', circuitid)

13. if m:

14. # FENT and GENT

15. alc.dhcp.sub _ident = "sub-" + m.group ()

16. elif len(circuitid) >= 3:

17. # GELT

18. # Note: GELT uses network byte (big endian) order for the VCI
19. vpl = struct.unpack('B', circuitid[-3:-21) [0]

20. vci = struct.unpack('>H', circuitid[-2:]) [0]

21. alc.dhcp.sub _ident = "sub-%d.%d" % (vpi, vci)
Explanation:

Line 1-2 — Import the libraries “re” and “alc” — Library imports can reside anywhere in the script
as long as the items are imported before they are used. Needed if regular expressions are used.

Line 3 — Imports the “struct” library, needed if regular expressions are used.

Line 11 — Assigns the contents of the DHCP Option 82 Circuit-ID field to a temporary variable
called “circuitid”.

Line 12 — Parses the “circuitid” and checks for the existence of the regular expression
“digit.digit” at the end of the string.

Line 15 — If found, a string containing the text “sub-" followed by these two digits is assigned to
the variable “sub-ident”.

Line 16 — If not found, and the length of circuit-id is at least 3.
Line 19 — Parses the “circuitid” and assigns the third-last byte to the temporary variable “vpi”.
Line 20 — Parses the “circuitid” and assigns the last two bytes to the temporary variable “vci”.

Line 21 — Assigns a string containing the text “sub-" followed by vpi and vci to the variable
“sub-ident”.

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

If this script is run, for example, with DHCP option field (assigned by an ASAM with FENT card)
containing:

options = \x52\x16\x01\x14TLV1: ATM:3/0:100.33

(in decimal: 80, 22, 1, 20TLV...)

The following variables are returned:

sub_ident: sub-100.33

If the above script is run, for example, with a DHCP option field (assigned by an ASAM with
GELT card) containing:

options = \x52\x10\x01\x0E\x01\x01\x00\x00\xA0\xA0\xA0\xA0\x00\x00\x00\x64 \x00\x22
(in decimal: 82, 16, 1, 15,1, 1, 0, 0, 160, 160, 160, 160, 0, 0, 0, 100, 0, 34; corresponding to VPI
100, VCI 34)

Python returns the following variables:

sub ident: sub-100.34

If the above script is run, for example, with a DHCP option field (assigned by an ASAM with
GENT card) containing:

options = \x52\x1A\x01\x18ASAM11 atm 1/1/01:100.35

The following variables are returned:

sub_ident: sub-100.35

7450 ESS Triple Play Service Delivery Architecture Page 1479

Limitations

Limitations

'% " operator — While %f is supported, %g and %e are not supported.

Floating Point Arithmetic — The floating point arithmetic precision on the box is less than the
precision required by the regression suites of Python. For example, pow(2., 30) equals to

1024.*¥1024.*%1024. until five numbers after the point instead of seven and sqrt(9) equals to 3. for
the first seven numbers after the point.

Using the round operator fixes these problems. For example, round(pow(2., 30)) equals
round(1024.%1024.*¥1024.) and round(sqrt(9)) equals 3.

| Page 1480 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

RADIUS Script Policy Overview

Python scripts for RADIUS AAA packets support manipulation in subscriber management
application. This feature is supported on 7750 SRs and 7450 ESSes in mixed mode. A Python
script can be executed in following cases:

* Before the system sends an access-request packet.

» After the system receives an access-accept packet.

* After the system receives an CoA-request packet.

* Before the system sends an accounting-request packet.

The input of the script is the corresponding original packet; and the output of packet will be used
as the new corresponding packet for further ESM AAA process.

The radius-script-policy contains URLs of a primary and optionally a secondary Python script,
which could be a local CF file path or a FTP URL. The configured radius-script-policy could be
used in different ESM polices like authentication-policy or radius-accounting-policy.

The following operations are supported within the script:

* Obtain the value of an existing attribute or VSA.
* Modity the value of an existing attribute or VSA.
* Add a new attribute or VSA.

* Remove an existing attribute or VSA.
Note that the following RADIUS attributes or VSA are read-only to Python script:

* Message-Authenticator
* Alc-LI-Action

* Alc-LI-Direction

* Alc-LI-Destination

e Alc-LI-FC

* Alc-LI-Intercept-1d

* Alc-LI-Session-Id

Since R12.0R1, users should use a Python policy (instead of a RADIUS script policy) for
RADIUS packet manipulation.

| 7450 ESS Triple Play Service Delivery Architecture Page 1481

Python RADIUS API

Python RADIUS API

Sample Script

Page 1482

The following new Python objects, alc.radius, have the following methods:

drop(): Drop the packet.
header(): Return the a dictionary object includes RADIUS header information.

alc.radius also provides methods to manipulate radius attributes via alc.radius.attributes, which
has the following methods:

get(type): Return the first attribute with specified type as a string.
getTuple(type): The same as above but returns a tuple of strings.
getVSA(vendor, type): Return the first VSA as a string.
getVSATuple(vendor, type): The same as above but returns a tuple of strings.

set(type, value): Set the specified attribute to the value. The value must be either a string
or a tuple of strings.

setVSA(vendor, type, value): Set the specified VSA to the value. The value must be either
a string or a tuple of strings.

clear(type): Remove the specified attribute.
clearVSA(vendor, type): Remove the specified VSA.
isSet(type): Return True if the specified attribute exists, False otherwise.

isVSASet(vendor, type): Return True if the specified VSA exists, False otherwise.

From alc import radius

#1. Get the value of an existing Attribute

Username=radius.attributes.get (1)

#2. Modify an existing attribute

radius.attributes.set (1, 'Tom')

#3. Remove an existing attribute

radius.attributes.clear (1)

#4. Add a new attribute

radius.attributes.set (126, ”WIFI-operator”)

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Python Policy Overview

The Python policy represents a general framework to support all existing and new python features.
A Python policy allows users to configure a Python script for specified ESM packet type (such as
DHCP, RADIUS, etc.) in a specified direction (ingress/egress). The system will execute the
configured script when sending or receiving the specified type of packet.

Within the script, the corresponding original packet will be used as input. The user can use the
system-provided API to manipulate the input packet (such as add/change/remove option/attribute)
and the changed packet is the output for further ESM processing. And in case of a DHCP
transaction cache, the script could also return ESM attributes.

Python policies support following ESM packet types and application:

e RADIUS
e DHCPv4
e DHCPv6

e DHCP Transaction Cache
e Diameter

* Python cache

The following is an example configuration on a specified group interface. The system will execute
cfl:/dhcpv4.py after received DHCPv4 discovery and before system forward DHCPv4 request
packet.

config>python# info
python-script "dhcpv4" create
primary-url "cfl:/dhcpv4d.py"
no shutdown
exit
python-policy "dhcp" create
dhcp discover direction ingress script "dhcpv4"
dhcp request direction egress script "dhcpv4"
exit

python-policy "dhcp"
server 9.9.9.9
lease-populate 100
gi-address 192.168.100.1
no shutdown

| 7450 ESS Triple Play Service Delivery Architecture Page 1483

Python Policy — RADIUS API

Python Policy — RADIUS API

The RADIUS API in Python policy uses the same API of the radius-script-policy.

Python Policy — DHCPv4 API

e The system will provide a Python object for input DHCPv4 packet: alc.dhcpv4.
* alc.dhcpv4 has following attributes to represent the DHCPv4 header fields:

Table 22: alc.dhcpv4 Attributes

Class Attrs DHCPv4 Header Field Access
alc.dhcpv4.pkt len int, Total length of original DHCPv4 packet(UDP/IP header read
excluded, including pad option) in bytes
alc.dhcpv4.pkt netlen int, Total length of original DHCPv4 packet(UDP/IP header read
excluded, pad option in the “options” field excluded) in bytes
alc.dhcpv4.op op read
alc.dhcpv4.htype htype read/write
alc.dhcpv4.hlen hlen read/write
alc.dhcpv4.hops hops read/write
alc.dhcpv4.xid xid read
alc.dhcpv4.secs secs read/write
alc.dhcpv4.flags flags read/write
alc.dhcpv4.ciaddr ciaddr read/write
alc.dhcpv4.yiaddr yiaddr read/write
alc.dhcpv4.siaddr siaddr read/write
alc.dhcpv4.giaddr giaddr read/write
alc.dhcpv4.chaddr chaddr read/write
alc.dhcpv4.sname sname read/write
alc.dhcpv4.file file read/write

| Page 1484 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

All attributes, except alc.dhcpv4.pkt len and alc.dhepv4.pkt netlen, are string with value of the
actual bytes in the header.

The following is a list all functions of alc.dhcpv4:

* alc.dhcpv4.drop()

» alc.dhcpv4. getOptionList()

* alc.dhcpv4.pad(min_size=300)

* alc.dhcpv4. get(op_code)

* alc.dhcpv4. set(op_code,valTuple)

* alc.dhcpv4. clear(op_code)

* alc.dhcpv4.get relayagent() / alc.dhcpv4.set relayagent(D4OL)

» alc.dhepv4.get vendorspecific() / alc.dhcpv4.set vendorspecific (D4OL)
DHCPv4 allows using sname and file fields to store options. However all DHCPv4 functions will
only operate with the “options” field. If a customer wants to manipulate options in the sname/file
field, they need to do the parsing work in the script. (extended string.tlvxy method could help
here)

* alc.dhepv4. drop(): The system will drop the result packet

* alc.dhcpv4. getOptionList(): Returns a tuple that includes the option-code of the existing
top level DHCPv4 options in the packet.

— The order of the element in the tuple is as same as the options that appear in the
packet.

— If'there are multiple instances of the same option, then each instance is one element in
the tuple.

\

Pad option(0) is excluded.
End option(255) is included

Example: A DHCP discovery packet with msg-type/lease-time/request-addr/
parameter-request-list/agent-info/end will return (53,51,50,55,82,255)

\J

)

* alc.dhcpv4.pad(min_size=300): This function will pad the resulting DHCPv4 packet to
the specified min_size with pad option(0) after executing the whole script. Padding will
not be added if the result packet is already >=min_size. The default value of min_size is
300. Although not defined in DHCPv4 RFC, many DHCPv4 implementation has a
minimal length requirement of 300 bytes. So this function could pad the result packet to
the specified min_size.

| 7450 ESS Triple Play Service Delivery Architecture Page 1485

Python Policy — DHCPv4 API

* alc.dhcpv4. get(op_code): Returns a tuple that includes all instances of the specified top
level option as a string. The value of this string is the exact bytes of the option as it
appears in packet(excludes option-code and option-len).

— If'the specified option does not exist, then the function will return ()

— If the certain instance of specified option does not have the value (len=0 or doesn’t
have len and value part), then the function will return “” for that instance in the tuple.

— Example: There is an address lease time option(51) in the packet, with value 60, then
alc.dhcpv4.get(51) should return: (“\x00\x00\x00\x3c’,)

» alc.dhcpv4. set(op-code,valTuple): This function will in fact remove the all existing
instances of specified top level option and insert a list of new options. Each element in
valTuple is a string, representing one instance of the new option to be inserted; For each
new option, the option-code is specified in op-code. The option-len is the length of the
element. The rest of option is the element itself.

— Example: To insert an address lease time option(51) in the packet, with the value 60;
use alc.dhepv4.set(51, (“\x00\x00\x00\x3c’,))

* alc.dhcpv4. clear(op-code): This function will remove the all existing instances of
specified top level option.

* Although alc.dhcpv4.get() and alc.dhcpv4.set() provide a generic way to manipulate
DHCPv4 top level options, but some DHCPv4 options have a complex/hierarchical
structure like option82 and option43. To provide a friendly access to these kinds of
options, the system provides the following options’ specific functions:

— alc.dhcpv4.get relayagent() / alc.dhcpv4.set relayagent(D4OL)
— alc.dhcpv4.get vendorspecific() / alc.dhcpv4.set vendorspecific (D4OL)

All ale.dhcpv4.get XXX() will return a data structure:*“D40OL” (DHCPv4 Option List)

— DA4OL is a list. Each element in the list represents an instance of that option. For
example, if there are 3 option82 in the “options” field of packet, then get relayagent()
will return a list of 3 elements. Each element represents one instance of the option in
the packet.

— Each element in D4OL is a dict (called dict as “D40” in this example):

— The key of D40 is the sub-option- code. The value is a list of strings of sub-
option-value of all instance of the sub-option.

All alc.dhcpv4.set XX(OPDL) will accept D4OL as the parameter. Remove all existing
instances of the corresponding options and then insert the new options represented by
specified D4OL.

| Page 1486 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Examples:

For a packet with an option82 like following

Option: (82) Agent Information Option

Length: 22
Option (82) Suboption: (1) Agent Circuit ID
Length: 8

Agent Circuit ID: 4a616e737656e73
Option 82 Suboption: (2) Agent Remote ID

Length: 10

Agent Remote ID 62617369632364617461

The option-data is (hex formatted)
“01:08:4a:61:6€:73:73:65:6¢:73:02:0a:62:61:73:69:63:23:64:61:74:61”

The following is an example script:

import alc

option82 list=alc.dhcpvé.get relayagent ()

#option82 list will be
[{1:["\xd4a\x61\x6e:73\x73\x65\x6e\x73",1,2:["\x62\x61\x73\x69\x63\x23\x64\x61\x74\x61",1]1}
]

4

Option82 1ist[0][2][0]='basic#video' #change remote-id to 'basic#video'

alc.dhcpvéd.set relayagent (option82 list)#update the option82

| 7450 ESS Triple Play Service Delivery Architecture Page 1487

Python Policy — DHCPV6 API

Python Policy - DHCPV6 API

* The system provides a Python object for input DHCPv6 packet: alc.dhcpvo
» alc.dhepvo6 has following attributes to represent the DHCPv6 header fields:

Table 23: DHCPv6 Header Fields

Class Attrs DHCPv6 Header Field Client/ Relay Msg Access
Server Msg
alc.dhcpv6.pkt len int, Total length of original ° ° Read
DHCPv4 packet(UDP/IP header
excluded) in bytes
alc.dhcpv6.msg_type msg-type ° ° Read
alc.dhcpvo6.transaction_id | transaction-id ° Read
alc.dhcpv6.hop count hop-count ° read/write
alc.dhcpv6.link addr link-address ° read/write
alc.dhcpv6.peer addr peer-address ° read/write

All header fields (as the attribute of alc.dhcpv6 class) are strings(except pkt len) with exact bytes
as it appears in the packet.

If certain attribute does not exist in the given msg-type, for example if the link attr does not exist
in client/server message(C/S msg), then its value should be None.

* The following is a list of all functions in the class:
alc.dhcpv6.drop()

alc.dhcpv6. getOptionList()

alc.dhcpvo6. get(op-code)

alc.dhcpvo6. set(op-code,valTuple)

alc.dhcpvo6. clear(op-code)

alc.dhcpvo.get iana() / alc.dhcpv6.set_iana(OPDL)
alc.dhcpv6.get iata() / alc.dhcpvo6.set iata(OPDL)
alc.dhcpv6.get vendoropts() / alc.dhcpv6.set vendoropts(OPDL)
alc.dhcpv6.get iapd() / alc.dhcpv6.set_iapd(OPDL)
alc.dhcpv6.get relaymsg()

2 2 2 2

alc.dhcpvo.set relaymsg(packet)
* alc.dhepv6. drop(): The system will drop the resulting packet.

Page 1488 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

» alc.dhcpv6. getOptionList(): Returns a tuple that includes the option-code of the existing
top level DHCPv6 options in the packet. The order of the element in the tuple is as same
as the options appear in the packet. If there are multiple instances of same option, then
each instance is one element in the tuple. For example:

— A C/S Msg with Elapsed Time/Client Identifier/IANA/FQDN/Vendor Class/Option
Request will return (8,1,3,39,16,6).
— A Relay Msg with Relay Message option only will return (9)
* alc.dhepv6. get(op-code): Returns a tuple that includes all instances of the specified top
level option as string The value of this string is the exact bytes of the option as it appears

in packet(excludes option-code and option-len). If the specified option does not exist in
the input packet, then it will return ().

Examples:

— If'there is a Status Code option in the packet, status-code 0 and status-msg:”Address
Assigned”; then alc.dhcpv6.get(13) should return: (“\x00\x00Address Assigned’,)

* alc.dhepv6. set(op-code,valTuple): This function will remove the all existing instances of
the specified top level option and insert a list of new options. Each element in valTuple is
a string, representing one instance of the new option to be inserted. For each new option,
the option-code is specified in op-code, the option-len is the length of the element, reset of
option is the element itself.

— To insert a Status Code options with status-code 0 and status-msg:”Address
Assigned”; use alc.dhcpv6.set(13, (“\x00\x00Address Assigned’,))

* alc.dhepv6. clear(op-code): This function will remove the all existing instances of
specified top level option.

* Although alc.dhcpv6.get() and alc.dhcpv6.set() provide a generic way to manipulate
DHCPv6 top level options, but some DHCPv6 options have more complex/hierarchical
structure like IA_NA/IA TA, etc. To provide a friendly access to these kinds of options,
the system provides the following options specific functions:

— alc.dhcpv6.get iana() / alc.dhcpv6.set iana(OPDL)

— alc.dhcpv6.get iata() / alc.dhcpv6.set_iata(OPDL)

— alc.dhepvo6.get vendoropts() / alc.dhcpvo6.set vendoropts(OPDL)
— alc.dhepv6.get iapd() / alc.dhcpv6.set_iapd(OPDL)

| 7450 ESS Triple Play Service Delivery Architecture Page 1489

Python Policy — DHCPV6 API

Page 1490

All ale.dhcpv6.get XXX() will return a data structure:“OPDL” (Option Data structure
List)

— OPDL is a list. Each element in the list represents an instance of that option. For
example, if there are 3 IANA in the packet, then get iana() will return a list of 3
elements, each element represent one instance of IANA option in the packet.

— Each element in OPDL is a list, referred to as “OPD” in this list.

— Each element in OPD represent one field in the option(option-code and option-len
are not included), the order of the element is as same as the fields appear in the
option

— For field that could be parsed into sub-option by RFC, then the element is a dict,
the key of this dict is the sub-option type, if sub-option is one of following
supported-sub-option, the value to the key is a sub-option_ OPDL represent the
list of that specific sub-option

— TAADDR(S)
— Status Code(13)
— IAPREFIX(26)

Else, if the sub-option is not one of above, then the value to the key is a list of string of
sub-option-data, each string represent one instance of the sub-option.

— The structure of sub-option OPDL of IAADDR is: [[v6_addr,prefer_lifetime,
valid_lifetime,sub-option OPDL], etc.]

— The structure of sub-option OPDL of Status Code is: [[status-code,status-msg],
etc.]

— The structure of sub-option OPDL of IAPREFIX is:
[[prefer_lifetime,valid_lifetime,prefix-len,v6prefix,sub-option OPDL],..]

— For the field (by RFC definition) could be parsed into sub-options, but it does not
actually exist, then the dict will be empty {}

— For field that cannot be parsed into sub-option by RFC, the element is a string of
exact bytes of that field

All ale.dhcpv6.set XX(OPDL) will accept an OPDL as the parameter. Remove all
existing instances of the corresponding options and then insert new options represented by
the specified OPDL.

alc.dhcpv6.get iana()/alc.dhcpv6.get iana(OPDL)

The general OPDL structure for these two functions is: [[IAID val,T1 val,T2 val, sub-
option_dict]]

The structure of sub-option_dict is: {sub-option-type:sub-option val}
If sub-option is supported-sub-option, then sub-option_val is a sub-option OPDL

For all other sub-options, the sub-option val is a list of string of sub-option-data

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Examples:

For a packet with an IANA option like following:

T e = e e e —— e - ——

= Identity Association for Non-temporary address

option: Identity Association for Non-temporary Address (3)

Length: 40

value: 0ff0def10002a30000043800000500182001055860450047. ..

IAID: Off0defl

T1: 172800

T2: 276480

= IA Address: 2001:558:68045:47:45cc:d9f2:5727 :eaed

option: IA Address (5)
Length: 24
value: 200105586045004745ccd9f25727eae00005460000054600
IPvE address: 2001:558:6045:47:45cc:d9f2:5727 :eael
preferred 1ifetime: 345600
valid lifetime: 345600

The option-data is (hex formatted)

“0f:£f0:de:£1:00:02:23:00:00:04:38:00:00:05:00:18:20:01:05:58:60:45:00:47:45:cc:d9:£2:57:2
7:ea:€0:00:05:46:00:00:05:46:00"

The following is an example script:

import alc

iana list=alc.dhcpv6.get iana()

#iana list will be

[["\x0f\xf0\xde\xfl"', "\x00\x02\xa3\x00"', "\x00\x04\\x38\x00", {5:[["\x20\x01\x05\x58\x60\x4
5\x00\x47\x45\xcc\xd9\xf2\x57\x27\xea\xe0"', "\x00\x05\x46\x00"', "\x00\x05\x46\x00"',{}11}1]
iana 1ist[0][1]="\x00\x00\x04\xb0"' #change Tl to 1200
alc.dhcpv6.set iana(iana list)#update the iana

* alc.dhepv6.get iata()/alc.dhcpv6.get iata(OPDL)
— The general OPDL structure for these two functions is: [[IAID val, sub-option_dict]]
— The structure of sub-option_dict is: {sub-option-type:sub-option_val}
— If sub-option is supported-sub-option, then sub-option_val is a sub-option OPDL
— For all other sub-options, the sub-option_val is a list of string of sub-option-data

Examples: These two function are very similar with [ANA, so the examples are skipped
here.

* alc.dhepv6.get iapd()/alc.dhcpv6.get iapd(OPDL)

* The general OPDL structure for these two functions is: [[IAID val,T1 val,T2 val, sub-
option_dict]]

* The structure of sub-option_dict is: {sub-option-type:sub-option val}

» If sub-option is supported-sub-option, then sub-option_val is a sub-option OPDL

| 7450 ESS Triple Play Service Delivery Architecture Page 1491

Python Policy — DHCPV6 API

* For all other sub-options, the sub-option_val is a list of string of sub-option-data

Examples: For a packet with [A_PD like following:

= Identity Association for Prefix Delegation
option: Identity Association for Prefix Delegation (25)
Length: 41
value: 000000010000070800000b400012001900000e1000015180. ..
IATID: 00000001
T1: 1800
T2: 2880
= IA Prefix
option: IA Prefix (26)
Length: 25
value: 00000e10000151803820010db80002000000000000000000. ..
preferred 1ifetime: 3600
valid 1ifetime: 86400
prefix Tength: 56
Prefix address: 2001:db8:2::

The option-data is (hex formatted)

*00:00:00:01:00:00:07:08:00:00:0b:40:00:12:00:19:00:00:0e:10:00:01:51:80:38:20:01:0d:b8:0
0:02:00:00:00:00:00:00:00:00:00:00"

Following is an example script:

import alc

iapd list=alc.dhcpvé6.get iapd()

#iapd list will be

[["\x00\x00\x00\x01", "\x00\x00\x07\x08", '"\x00\x00\x0b\x40"', {26: [["\x00\x00\x0e\x10"', "\x00
\x01\x51\x80", "\x38"', '"\x20\x01\x0d\xb8\x00\x02\x00\x
00\x00\x00\x00\x00\x00\x00\x00\x00",{}11}1]

iapd 1ist[0][1]="\x00\x00\x04\xb0"' #change Tl to 1200
alc.dhcpvé6.set iapd(iapd list)#update the iapd

» alc.dhepvob.get vendoropts()/alc.dhcpv6.get vendoropts (OPDL)

— The general OPDL structure for these two functions is: [[enterpriseid val, sub-
option_dict]]

\J

The structure of sub-option_dict is: {sub-option-type:sub-option_val}

A

If sub-option is supported-sub-option, then sub-option_val is a sub-option OPDL

A

For all other sub-options, the sub-option_val is a list of string of sub-option-data

| Page 1492 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Examples: For a packet with vendor options like following:

= Vendor-specific Information
option: vendor-specific Information (17)
Length: 40
value: 0000197f0001000969612d6e615F3030310002000969612d. ..
Enterprise ID: Panthera Networks, Inc. (8527)
= option
option code: 1
option length: 9
option-data
= option
option code: 2
option length: 9
option-data
= option
option code: 3
option length: 1
option-data
= option
option code: 4
option length: 1
option-data

The option-data is (hex formatted)

“00:00:19:7£:00:01:00:09:69:61:2d:6e:61:5£:30:30:31:00:02:00:09:69:61:2d:70:64:5£:30:30:3
1:00:03:00:01:38:00:04:00:01:40"

The following is an example script:

import alc

vendoropts list=alc.dhcpv6.get vendoropts ()

vendoropts list will be [['\x00\x00\x19\x7f",
{1:["\x69\x61\x2d\x6e\x61\x5f\x30\x30\x31"],2:[
"\x69\x61\x2d\x70\x64\x5f\x30\x30\x31"],3:["'"\x38"'], 4:['"\x40"']1}1]1]
iapd 1ist[0][1]1([4]1([0]="\x60"' #change sub-option 4’s value to 0x60
alc.dhcpvé6.set vendoropts (vendoropts list)#update the vendor options

* For DHCPvO6 relay message, the “Relay Message” option embedded a full DHCPv6
packet and the embedded packet could itself have a “Replay Message” option which
embedded another DHCPv6 packet.

To provide direct access to embedded DHCPv6 packet, the system provides following
functions:

— alc.dhcpvb.get relaymsg()
— alc.dhcpv6.set relaymsg(packet)

* alc.dhepv6. get relaymsg(): This function will return a populated alc.dhcpv6 object.
which means the returned object was initialized with the DHCPv6 packet embedded in
“Relay Message” option as the input.

* alc.dhepv6. set_relaymsg(packet): This function will accept an alc.dhcpv6 object as a
parameter. This object will replace existing “Relay Message” option.

| 7450 ESS Triple Play Service Delivery Architecture Page 1493

Python Policy — DHCPV6 API

Page 1494

* Example-1 script for single relay message:

import alc

#input packet is a relay-reply msg

embed dhcpv6 packet=alc.dhcpv6.get relaymsg ()

iana list=embed dhcpvé packet.get iana()

iana 1ist[0][1]="\x00\x00\x04\xb0"' #change Tl to 1200

embed dhcpvé_packet.set iana(iana_ list)#update the iana of the embedded packet
alc.dhcpvé6.set relaymsg(embed dhcpv6 packet) #update the Relay Message option

* Example-2 script for double relay message (relay of relay):

import alc

#input packet is a relay-reply msg

embed 1lvl packet=alc.dhcpvé6.get relaymsg() #get the level=1 embedded packet
embed 1v2 packet= embed 1lvl packet.get relaymsg()#get level-2 packet embedded in level-1
packet

iana list=embed dhcpv6 packet.get iana()

iana 1ist[0][1]1="\x00\x00\x04\xb0" #change T1 to 1200

embed_dhcpvé6_packet.set_ iana(iana_list) #update the iana

embed 1lvl packet.set relaymsg(embed 1v2 packet)#update the Relay Message option of 1lvl msg
alc.dhcpvé6.set relaymsg(embed 1vl packet)#update the Relay Message option of the top level
msg

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Python Policy — Diameter API

The alc.diameter Python module provides an API for Diameter message manipulation.
Terminology used in the API description:

* top-level-AVP — AVP appearing at the top level in a Diameter message, i.e. not
embedded in the Data field of a grouped AVP

* embedded-AVP — AVP embedded in the Data field of a grouped AVP. An embedded
AVP can be a grouped AVP. This is called nesting.

e AVP-tuple — Python tuple with following values:
(AVP code, vendor id, flags)
AVP code : integer, AVP header field
vendor id : integer, AVP header field
flags : string, AVP header field

* AVP-value-tuple — Python tuple with following values:
(flags, data)
flags: string, AVP header field
data: string, AVP data field

* AVP-key-tuple — Python tuple with following values:
(AVP code, vendor id)
AVP code: integer, AVP header field
vendor id : integer, AVP header field

* grouped-AVP-value-tuple — Python tuple with following values:
(flags, grouped-AVP-dictionary)
flags: string, AVP header field
e grouped-AVP-dictionary - Python dictionary with following key:value pairs:

{AVP-key-tuple : [AVP-value-tuple or grouped-AVP-value-tuple, ...], ... }
key = AVP-key-tuple
value = list of AVP-value-tuples or list of grouped-AVP-value-tuples

e grouped-AVP-decode-tuple — Python tuple with following values:

(AVP-key-tuple, ...)
tuple of AVP-key-tuples

* AVP-order-tuple — Python tuple with following values:

(AVP-key-tuple, ...)
tuple of AVP-key-tuples

| 7450 ESS Triple Play Service Delivery Architecture Page 1495

Python Policy — Diameter API

Table 24 displays attributes available in alc.diameter module providing access to the Diameter
message header:

Table 24: Diameter Message Header alc.diameter Attributes

Attribute Description Type Access
application_id Diameter message header field string Read/Write
code Diameter message header field string Read/Write
end to end id Diameter message header field string Read/Write
flags Diameter message header field string Read/Write
hop by hop id Diameter message header field string Read/Write
msg_length Diameter message header field. string Read

The value is the message length
of the original diameter message.
version Diameter message header field string Read/Write

Table 25 displays methods available in alc.diameter module providing message and AVP
manipulation functionality:

Table 25: Message and AVP Manipulation Functionality alc.diameter Methods

Method Description
clear_avps(AVP code, ven- | Remove all instances of the specified AVP from the message.
dor id) Applies to top-level-AVP’s only. If the specified AVP is not
AVP code, vendor id = top- | present, no python error is generated. Vendor id value zero
level-AVP matches top-level-AVP’s without Vendor 1d field.

Return value: None
For example:
diameter.clear avps(256, 12645)

drop() Drop the Diameter message. Packet is consumed at TCP level
(ack send). A drop will trigger retransmits on Diameter level.
Return value: None

For example:

diameter.drop()

Page 1496 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Table 25: Message and AVP Manipulation Functionality alc.diameter Methods (Continued)

Description

Method
get _avps(AVP code, vendor
id)
AVP code, vendor id = top-
level-AVP

Returns a list of AVP-value-tuples. Each AVP-value-tuple rep-
resents an instance of the specified AVP in the message.
Applies to top-level-AVP’s only. The position in the list corre-
sponds with the position of the AVP instance in the message at
that stage in the script. When executed before any clear or set
AVP method, the list order corresponds with the AVP order in
the received message. If the specified AVP is a grouped AVP,
then the data will contain all the embedded-AVP’s. An empty
list is returned if the specified AVP is not present. Vendor id
value zero matches top-level-AVP’s without Vendor Id field.
For example:

diameter.get avps(263, 0)

[(@', 'bng.alcatel-lucent.com;1398156449;28")]

get _avps_list()

Returns a list of AVP-tuples. Each AVP-tuple represents an
instance of an AVP in the message. Applies to top-level-AVP’s
only. The position in the list corresponds with the position of
the AVP in the message at that stage in the script. When exe-
cuted before any clear or set AVP method, the list order corre-
sponds with the AVP order in the received message. When
multiple instances of an AVP are present in the message, then
there will be multiple instances in the list. The Vendor Id has
value zero when not present. Grouped AVPs cannot be distin-
guished from other AVPs in the list.

For example:

diameter.get avps_list()

[(263,0,'@", (264, 0,'@"), (296, 0,'@"), (258, 0,'@"), (416, 0,
‘@), (415, 0,'@), (268, 0, '@, (55, 0,'@", (456, 0, '@"),
(456, 0,'@"), (456, 0,'@"), (293, 0, '@"), (256, 12645, "x80")]

7450 ESS Triple Play Service Delivery Architecture Page 1497

Python Policy — Diameter API

Table 25: Message and AVP Manipulation Functionality alc.diameter Methods (Continued)

Method Description
get grouped avps(AVP Returns a list of grouped-AVP-value-tuples with each grouped-
code, vendor 1id, grouped- AVP-dictionary entry representing an embedded AVP. Each
AVP-decode-tuple) grouped-AVP-value-tuple represents an instance of the speci-
AVP code, vendor id = top- | fied AVP in the message. Applies to top-level-AVP’s of type
level-AVP grouped only. The position in the list corresponds with the

position of the grouped AVP instance in the message at that
stage in the script. When executed before any clear or set AVP
method, the list order corresponds with the AVP order in the
received message.

If the grouped-AVP-decode-tuple is empty, only the specified
top-level-AVP is expanded in a grouped-AVP-value-tuple,
with each grouped-AVP-dictionary entry representing an
embedded AVP and all dictionary values of type “list of AVP-
value-tuples”

To expand nested AVPs (grouped AVPs embedded in a
grouped AVP), the grouped top-level-AVP and grouped
embedded-AVP to expand must be added to the grouped-AVP-
decode-tuple. All grouped AVP’s in the grouped-AVP-decode-
tuple will be expanded in a list of grouped-AVP-value-tuples
provided that their embedding AVP is also in the list.

The position of the embedded AVPs in the grouped-AVP-dic-
tionary does not correspond with the position in the grouped
AVP.

If the specified top-level-AVP is not a grouped AVP, then a
Python error is generated: ‘ValueError: malformed diameter
message”.

For example:

To expand the Multiple Services Credit Control (456) grouped
top level AVP:

diameter.get grouped avps(456,0,())

[(@', {(432, 0): [(@', "x00\x00\x00\x01")], (431, 0): [(@',
"x00\x00\x01\xa4@\x00\x00\x0c\x00\x00\x00d")], (448, 0):
[(@', "x00\x00\x04\xb0"], (268, 0): [(@',
"x00\x00\x07\xd1")]}), (@', {(432, 0): [(@',
"x00\x00\x00\x02")], (431, 0): [('@),
"x00\x00\x01\xa4@\x00\x00\x0c\x00\x00\x03\x84")], (448,
0): [('@', "x00\x00\x04\xb0"], (268, 0): [(@/,
"x00\x00\x07\xd1")]}), (@', {(432, 0): [(@',
"x00\x00\x00\x03")], (431, 0): [('@,

"x00\x00\x0 1\xa4(@\x00\x00\x0c\x00\x00\x00<")], (448, 0):
[(@', "x00\x00\x04\xb0"], (268, 0): [(@',
"x00\x00\x07\xd1")]})]

| Page 1498 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Table 25: Message and AVP Manipulation Functionality alc.diameter Methods (Continued)

Method

Description

To expand the nested Granted-Service-Unit AVP (code 431) in
the grouped Multiple Services Credit Control top level AVP
(code 456):

diameter.get grouped avps(456,0,((456,0),(431,0)))

[(@', {(432, 0): [(@', "x00\x00\x00\x01")], (431, 0): [(@/,
{(420, 0): [(@', "x00\x00\x00d")]})], (448, 0): [('@),
"x00\x00\x04\xb0")], (268, 0): [(@', "x00\x00\x07\xd1")]}),
(@', {(432,0): [(@', "\x00\x00\x00\x02"], (431, 0): [(@/,
{(420, 0): [(@', "\x00\x00\x03\x84")]})], (448, 0): [('@',
"x00\x00\x04\xb0")], (268, 0): [(@', "x00\x00\x07\xd1")]}),
(@', {(432,0): [(@', "x00\x00\x00\x03")], (431, 0): [(@/,
{(420, 0): [(@', "x00\x00\x00<")]})], (448, 0): [(@',
"x00\x00\x04\xb0")], (268, 0): [(@', "x00\x00\x07\xd1")]})]

set_avps(AVP code, vendor
id, list of AVP-value-tuples)
AVP code, vendor id = top-
level-AVP

Remove all instances of the specified top-level-AVP from the
message. For each entry in the AVP-value-tuple list, a top-
level-AVP instance is inserted.

If the specified vendor id value is zero, then no vendor id field
is inserted and setting the Vendor-Specific bit in the flags field
of the AVP value tuple will then result in a Python error: “Val-
ueError: no vendor ID but vendor flag set”.

If the specified vendor id value is non-zero, then a vendor id
field is inserted and not setting the Vendor-Specific bit in the
flags field of the AVP value tuple will result in a Python error:
“ValueError: vendor ID but vendor flag not set”.

Padding between AVPs, AVP length and Diameter message
length are adapted accordingly by the system.

Return value is None.

For example:

diameter.set_avps(461,0,[("\x40', 'Pytho.n-1"), ("x40', 'Python-
29D

set fixed position_avps(
AVP-order-tuple)

Put the specified top-level-AVPs at the beginning of the mes-
sage in the order as specified in the AVP-order-tuple.

This method overrides the order of the top-level-AVPs in the
resulting Diameter message. If for example the session-id AVP
must appear as first in the message, then the corresponding
AVP-key-tuple must be included in the first position of the
AVP-order-tuple.

AVPs not present in the message but specified in the AVP-
order-tuple are ignored.

7450 ESS Triple Play Service Delivery Architecture Page 1499

Python Policy — Diameter API

Table 25: Message and AVP Manipulation Functionality alc.diameter Methods (Continued)

Method Description

AVPs present in the message and not specified in the AVP-
order-tuple will be included in the final message after the
AVPs listed in the AVP-order-tuple. The order is deterministic
but implementation specific.

This method can appear at any point in the script. The last call
will override the previous one.

From a black box viewpoint, this method is executed at the end
of the script: the result of the call is not reflected in the list
returned by a subsequent get avp_list() call.

Return value: None

For example:

diameter.set fixed position_avps(((263,0), (264,0), (296.0),

(268,0)
set_grouped avps(AVP Remove all instances of the specified grouped top-level-AVP
code, vendor id, list of from the message. For each entry in the grouped-AVP-value-

grouped-AVP-value-tuples) | tuples list, a grouped top-level-AVP instance is inserted.

AVP code, vendor id = top- | The order of the embedded-AVPs in the grouped AVP cannot
level-AVP be specified.If the specified vendor id value is zero, then no
vendor id field is inserted and setting the Vendor-Specific bit in
the flags field of the AVP value tuple will then result in a
Python error: “ValueError: no vendor ID but vendor flag set”.
If the specified vendor id value is non-zero, then a vendor id
field is inserted and not setting the Vendor-Specific bit in the
flags field of the AVP value tuple will result in a Python error:
“ValueError: vendor ID but vendor flag not set”.

Padding between AVPs, AVP length and Diameter message
length are adapted accordingly.

Return value is None.

For example:

diameter.set grouped avps(456,0,[('@', {(432, 0): [(@',
"x00\x00\x00\x01")], (431, 0): [(@', {(420, 0): [(@',
"x00\x00\x00\x2b")]})], (448, 0): [(@', "x00\x00\x04\xb0")],
(268, 0): [(@', "x00\x00\x07\xd1")]}), (@', {(432, 0): [(@',
"x00\x00\x00\x03"], (431, 0): [(@', {(420, 0): [(@',
"x00\x00\x00\x53")]})], (448, 0): [(@', "x00\x00\x04\xb0")],
(268, 0): [('@', "x00\x00\x07\xd1")]})])

| Page 1500 7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

To enable Diameter message manipulation using Python, a python-policy must be configured in
the diameter-peer-policy. For example:

configure
aaa
diameter-peer-policy "diameter-peer-policy-1" create
description "Diameter peer policy"
applications gy
origin-host "bng.alcatel-lucent.com"
origin-realm "alcatel-lucent.com"
python-policy "py-policy-diam-1"
source-address 192.0.2.5
peer "peer-1" create
address 172.16.1.1
destination-host "server.alcatel-lucent.com"
destination-realm "alcatel-lucent.com"
no shutdown
exit
exit
exit

The python-policy specifies the python-script to use for each Diameter message type received or
transmitted on a Diameter peer. In the ingress direction, the Python script is executed when the
corresponding packet type is received on the Diameter peer but prior to further processing in the
system. In the egress direction, the Python script is executed prior to sending the corresponding
packet type on the Diameter peer. For example:

configure
python
python-policy "py-policy-diam-1" create
description "Python policy"
diameter ccr direction egress script "diameter-1"
diameter cca direction ingress script "diameter-2"
exit
exit

The python-script specifies the location of the script and optional protection mechanism. For
example:

configure
python
python-script "diameter-1" create
primary-url "ftp://usr:pwd@192.0.2.1/./py/diam-1.py"
no shutdown
exit
exit

As an example, the diam-1.py script, clears the M-bit from the Event-Timestamp AVP (code 55):

from alc import diameter
avpS5=diameter.get avps(55,0)
diameter.set_avps(SS,O,[('\xOO',avaS[O][1])])

7450 ESS Triple Play Service Delivery Architecture Page 1501

Python Policy — DHCP Transaction Cache API

Python Policy — DHCP Transaction Cache API

Page 1502

A DHCP transaction cache (DTC) is a short-lived cache during DHCPv4/v6 transaction. The
cache could be used to store user-chosen information or return ESM attributes via a Python script.
The DTC’s lifetime is only during a single DHCP transaction (for example, only between
discovery-offer, request-reply). This includes both alc.dtc.store() data and alc.dtc.setESM() data.
DTC is also a transaction specific cache, which means the cached information could only be
accessed by the Python script running in same DHCP transaction.

The following are the DTC APIs:

e alc.dtc.derivedld: A string used as a LUDB lookup key

» alc.dtc.store(cache-key, cache-value): Store the value with the specified cache-key in
DTC, both key and value are string.

» alc.dtc.retrieve(cache-key): Returns the cached value string according to the specified
cache-key, raise exception if specified key does not exist.

* alc.dtc.setESM(ESM-key, value): Sets the specified ESM attribute, which could be used
when system creating the ESM host. Note that due to the short-live nature of DTC,
setESM should be used in final DHCP transaction before system create ESM host., such
as DHCPv4 REQUEST-ACK.

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

* The following is a list of supported ESM-key and its corresponding python type:
alc.dtc.accountingPolicy:str
alc.dtc.ancpString:str
alc.dtc.appProfileString:str
alc.dtc.catMapString:str
alc.dtc.defGw:str
alc.dtc.dhcpv4GIAddr:str
alc.dtc.dhcpv4Pool:str
alc.dtc.dhcpv4ServerAddr:str
alc.dtc.dhcpv6oLinkAddr:str
alc.dtc.dhcpv6oServerAddr:str
alc.dtc.intDestld:str
alc.dtc.ipAddress:str
alc.dtc.ipv4LeaseTime:int
alc.dtc.ipv4PrimDns:str
alc.dtc.ipv4SecDns:str
alc.dtc.ipv6Address:str
alc.dtc.ipvoDelegatedPrefix:str
alc.dtc.ipvbDelegatedPrefixLength:int
alc.dtc.ipv6PrefixPool:str
alc.dtc.ipv6PrimDns:str
alc.dtc.ipv6SecDns:str
alc.dtc.ipv6SlaacPrefix:str
alc.dtc.ipv6WanPool:str
alc.dtc.msapGrouplnterface:str
alc.dtc.msapPolicy:str
alc.dtc.msapServiceld:str
alc.dtc.primNbns:str
alc.dtc.retailServiceld:str
alc.dtc.secNbns:str
alc.dtc.slaProfileString:str
alc.dtc.subldent:str
alc.dtc.subProfileString:str
alc.dtc.subnetMask:str

N 2 2 T e e A e N N R S S S A A R

| 7450 ESS Triple Play Service Delivery Architecture Page 1503

Python Cache Support

Python Cache Support

Page 1504

Python cache support allows information to be shared across different run times of the same
python script or even different python scripts in a programmatic way. It essentially provides a
central memory cache and a set of APIs which let the user store and retrieve strings. For example,
a DHCP python-script could store a DHCP option into cache and later a RADIUS python-script
could retrieve stored string and add it into access-request.

Each cached entry in the cache is a tuple of (key, val). key is used as entry id. val is the string to be
cached. Both key and val are strings. The max length of the key is 512 bytes. Future more, the
combine length of key+val is limited by the configured value of entry-size size command in the
python-policy.

The Python cache can be enabled per python-policy. Each python policy has its own cache
memory which script in other python-policy cannot access. This also implies that the key of a
cached entry in different a python policy could overlap.

The user can also specify the max number cache entry per python policy the command max-
entries command. System has a global limit for python cache memory of 256MB.

The cached entries could be made persistent by saving it to CF card. This can be enabled with the
persistence command in the python policy.

Note: From memory consumption point of view, with MCS enabled, each cached entry will have
a corresponding MCS record, so each entry will consume twice amount of memory.

The system also supports syncing the python cache across chassis with MCS. This can be
configured per python policy with the mes-peer command in the python policy.

Each cached entry has a remaining lifetime. If it decreases over time, the system will remove the
cached entry if its remaining lifetime is 0. The remaining lifetime can be changed using a system-
provided API. The initial lifetime of a newly created cache entry is 600 seconds.

The following are the python cache APIs in a module alc.cache:

» alc.cache.save(val,key): Saves the val identified by the key into the cache. If there is an
existing cache entry with same key, then it will be overwritten with the new val. An
exception will be raised if the save failed (for example, due to exceeding the max number
of entries).

» alc.cache.retrieve(key): Returns the stored entry’s val identified by the key. A KeyError
exception will be raised if the specified entry does not exist.

» alc.cache.clear(key): Removes the cached entry identified by the key. Raise KeyError
exception if the specified entry does not exist.

o cache.get lifetime(key): The system will return a integer as seconds of remaining lifetime
of the specified entry. It will return none if the specified entry does not exist. An exception
will be raised for any other error.

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

» cache.set lifetime(key,new_lifetime): The new_lifetime value is an integer. The system
will set the remaining lifetime of the specified entry to the number of seconds of the
new_lifetime. An exception will be raised for any error including specified entry does not
exist. If the new_lifetime>=max_lifetime(configurable using the max-entry-life
command in the python policy), then the system will set the actual lifetime to the
max_lifetime.

| 7450 ESS Triple Play Service Delivery Architecture Page 1505

Applying a Python Policy

Applying a Python Policy

The following is a list of places that a Python policy could be applied:
e Under capture SAP — Apply to the DHCPv4/v6 packets sent/received on the capture
SAP.

* Under group-interface — Apply to DHCPv4/v6 packets sent/received on the group-
interface.

* Under subscriber-interface — Apply to DHCPv4 packets on the retail subscriber
interface.

* In the radius-server-policy — Apply to the RADIUS packets sent/received to/from the
RADIUS servers configured in the radius-server-policy.

e In the radius-proxy-server — Apply to the RADIUS packets on the client side of proxy.

* In the diameter-peer-policy — Apply to the Diameter packets send/received on the
Diameter peers configured in the policy.

Python Script Protection

Page 1506

In order to protect the Python script from unintended changes, the SR-OS supports a new Python
script file format:SRPY. Since 12.0R1, SRPY includes a key based hash(HMAC) of the original
script content. When the system loads a script with SRPY format, a hash will be computed by
using a configured key and script content. The result hash will be compared to the embedded hash.
If it is the same, then this script is considered valid. Otherwise, the system will abort with a
warning message.

Users can configure protection hmac-sha256 key <key> within a Python script. To mandate, all
configured scripts must be in SRPY format.

The system provides a tool command (tool perform python-script protect) to convert a Python
script into SRPY format.

7450 ESS Triple Play Service Delivery Architecture

Service Manager Scripting Language

Tips and Tricks

» Use xrange() instead of range().

* Avoid too many string operations. The following scripts provide the same output:

This script takes 2.5 seconds. s = ""
for ¢ in 'A'*50000:
s += str(ord(c)) + ', ' print '[' + s[:-2] + ']'

This script takes 0.1 seconds. print map(ord, 'A'*50000)

| 7450 ESS Triple Play Service Delivery Architecture Page 1507

Tips and Tricks

| Page 1508 7450 ESS Triple Play Service Delivery Architecture

	Python Script Support for ESM
	Python Script Support for ESM
	Python in SR-OS Overview
	Python Changes

	Python Support in sub-ident-policy
	Configuration
	Operator Debugging
	Python Scripts
	Sample Python Scripts
	Example
	Example
	Example

	Limitations

	RADIUS Script Policy Overview
	Python RADIUS API
	Sample Script

	Python Policy Overview
	Python Policy – RADIUS API
	Python Policy – DHCPv4 API
	Python Policy – DHCPv6 API
	Python Policy – Diameter API
	Python Policy – DHCP Transaction Cache API
	Python Cache Support
	Applying a Python Policy
	Python Script Protection

	Tips and Tricks

